Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Virol Sin ; 36(5): 890-900, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1174013

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic worldwide. Vaccines and antiviral drugs are the most promising candidates for combating this global epidemic, and scientists all over the world have made great efforts to this end. However, manipulation of the SARS-CoV-2 should be performed in the biosafety level 3 laboratory. This makes experiments complicated and time-consuming. Therefore, a safer system for working with this virus is urgently needed. Here, we report the construction of plasmid-based, non-infectious SARS-CoV-2 replicons with turbo-green fluorescent protein and/or firefly luciferase reporters by reverse genetics using transformation-associated recombination cloning in Saccharomyces cerevisiae. Replication of these replicons was achieved simply by direct transfection of cells with the replicon plasmids as evident by the expression of reporter genes. Using SARS-CoV-2 replicons, the inhibitory effects of E64-D and remdesivir on SARS-CoV-2 replication were confirmed, and the half-maximal effective concentration (EC50) value of remdesivir and E64-D was estimated by different quantification methods respectively, indicating that these SARS-CoV-2 replicons are useful tools for antiviral drug evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Drug Evaluation , Humans , Replicon , Virus Replication
2.
Front Immunol ; 11: 586572, 2020.
Article in English | MEDLINE | ID: covidwho-979019

ABSTRACT

COVID-19 pandemic has infected millions of people with mortality exceeding >1 million. There is an urgent need to find therapeutic agents that can help clear the virus to prevent severe disease and death. Identifying effective and safer drugs can provide more options to treat COVID-19 infections either alone or in combination. Here, we performed a high throughput screening of approximately 1,700 US FDA-approved compounds to identify novel therapeutic agents that can effectively inhibit replication of coronaviruses including SARS-CoV-2. Our two-step screen first used a human coronavirus strain OC43 to identify compounds with anti-coronaviral activities. The effective compounds were then screened for their effectiveness in inhibiting SARS-CoV-2. These screens have identified 20 anti-SARS-CoV-2 drugs including previously reported compounds such as hydroxychloroquine, amlodipine besylate, arbidol hydrochloride, tilorone 2HCl, dronedarone hydrochloride, mefloquine, and thioridazine hydrochloride. Five of the newly identified drugs had a safety index (cytotoxic/effective concentration) of >600, indicating a wide therapeutic window compared to hydroxychloroquine which had a safety index of 22 in similar experiments. Mechanistically, five of the effective compounds (fendiline HCl, monensin sodium salt, vortioxetine, sertraline HCl, and salifungin) were found to block SARS-CoV-2 S protein-mediated cell fusion. These FDA-approved compounds can provide much needed therapeutic options that we urgently need during the midst of the pandemic.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , High-Throughput Screening Assays/methods , Pandemics/prevention & control , SARS-CoV-2/drug effects , Animals , COVID-19/epidemiology , COVID-19/virology , Cell Line , Drug Repositioning/methods , Fendiline/therapeutic use , HEK293 Cells , Humans , Monensin/therapeutic use , SARS-CoV-2/physiology , Salicylanilides/therapeutic use , Sertraline/therapeutic use , Vortioxetine/therapeutic use
3.
Nat Commun ; 11(1): 3810, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-690732

ABSTRACT

The pandemic of COVID-19 has posed an unprecedented threat to global public health. However, the interplay between the viral pathogen of COVID-19, SARS-CoV-2, and host innate immunity is poorly understood. Here we show that SARS-CoV-2 induces overt but delayed type-I interferon (IFN) responses. By screening 23 viral proteins, we find that SARS-CoV-2 NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6 and M protein inhibit Sendai virus-induced IFN-ß promoter activation, whereas NSP2 and S protein exert opposite effects. Further analyses suggest that ORF6 inhibits both type I IFN production and downstream signaling, and that the C-terminus region of ORF6 is critical for its antagonistic effect. Finally, we find that IFN-ß treatment effectively blocks SARS-CoV-2 replication. In summary, our study shows that SARS-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Immune Evasion , Interferon Type I/metabolism , Pneumonia, Viral/virology , Signal Transduction , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Cell Line , Coronavirus Infections/immunology , Humans , Immunity, Innate , Interferon-beta/genetics , Interferon-beta/metabolism , Interferon-beta/pharmacology , Mutation , Open Reading Frames , Pandemics , Pneumonia, Viral/immunology , Promoter Regions, Genetic , SARS-CoV-2 , Signal Transduction/drug effects , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL